Category: linux

  • The Difference Between Automation and True Operational Efficiency

    The Difference Between Automation and True Operational Efficiency

    Reading Time: 3 minutes

    And so a lot of people start off thinking that if you automate it, it is efficient. Automation is a step towards but not synonymous with operational efficiency. In practice, if I have to automate a bad process you just move faster in the wrong direction.

    Operational efficiency is not about doing more stuff faster. It’s about designing systems with work flowing smoothly, with clear decisions that lead to effort being spent where it brings real vale and so forth.

    By separating automation from real efficiency, that insight is important for businesses who want to scale in a sustainable way.

    Why Automation Isn’t Everything

    Automation is about using software to replace manual action. It accelerates data entry, report writing, approvals and notifications. Although less human effort is involved, that doesn’t mean work is organized better.

    No one seems to care that if a workflow is long, messy or unnecessary, automating it only obscures the mess. There are still bottlenecks, handoffs and teams that can’t seem to get things done — they’re just moving half as slowly.

    This explains why lots of automation efforts don’t last the distance. They treat symptoms, not the underlying system.

    What Operational Efficiency Truly Looks Like

    Operational efficiency isn’t just about automating a task. It’s all about reducing friction throughout the whole process.

    A good operation is design around results not actions. Systems are how teams work today, not how things were written up in documents years ago. Even the decisions are faster now because information is coming through at the right time and in context.

    When efficiency is optimized automation happens by osmosis — it’s not the starting point.

    Automation vs. Operational Efficiency – Not Just Semantics Here’s a quick comparison between Automation and Operational Efficiency.

    Automate speed at the task level. Increased skills Training and recruitment are likely to be brought forward; driving a productivity train effect, cutting through the business.

    Automation reduces manual effort. When there’s less running of garbage work, the unnecessary lifting in general is drastically reduced.

    Automation focuses on tools. Operational improvement The operating improvement focus is on systems, behavior (e.g., staff meetings, etc.), and the process of decision making.

    Those companies that merely play at automation tend to experience some initial gains but a lot of frustration later on. They make companies that concentrate on efficiency more resilient and scalable.

    The Hidden Risks of Over-Automation

    Over-automation without re-design can lead to new issues. There is a potential for loss of visibility in the teams. Errors can propagate faster. It is hard to handle an exception in a stiff system.

    In some instances, workers spend more time supervising automation than performing productive work. It is a vicious downward slippery slope of reduced adoption, shadow workflows and lack of system trust.

    Real efficiency mitigates these risks by simplifying before automating.

    It’s easier than ever for businesses to succeed against all odds.

    The successful organizations, they realize how work is flowing across teams. They pinpoint bottlenecks, duplicated effort and superfluous approvals. They’d only use automation deliberately.

    State-of-the-art enterprises prioritize integrated platforms, intuitive user experiences (UX), real-time data access and a flexible architecture. Automation underpins these fundamentals rather than supplanting them.

    The payoff is more fluid implementation, improved decision making and systems that grow without regular handholding.

    How Sifars Makes MIOps Efficient

    We at Sifars enable businesses to move beyond superficial automation, so they can achieve real operational efficiency. We rethink the process, transform legacy, and apply intelligent automation where it adds value.

    Our philosophy is that automation should be a benefit to operations, not an additional source of complexity. It’s not just faster processes they are after — better ones.

    Final Thoughts

    Automation is a tool. Operational efficiency is a strategy.

    Companies who grasp this distinction don’t simply move faster — they move smarter. And by paying attention to how work flows, how decisions are made and how systems support people they build operations that scale with confidence.

    Interested in taking operations beyond automation to true efficiency?

    👉 Contact Sifars for building tools that work just as hard as other teams.

  • The Hidden Cost of Slow Internal Tools on Enterprise Growth

    The Hidden Cost of Slow Internal Tools on Enterprise Growth

    Reading Time: 3 minutes

    When organizations do speak of growth challenges, the focus tends to be outward-facing — market competition, customer acquisition or pricing pressure. What’s less visible is a much quieter problem occurring within the organization: slow, outdated internal tools.

    They don’t manifest themselves in a single line item on a balance sheet. They don’t trigger immediate alarms. But eventually they slowly drain productivity, delay decisions, frustrate teams and hold back growth much more than most leaders ever recognize.

    Enterprise growth knows no bounds in a digital first economy, no longer hinged on ambition or ideas. It is only as good as its internal systems work.

    Why Internal Tools Matter Now More Than Ever

    Today’s companies rely on proprietary software for everything from operations and sales, to HR and logistics. When these systems are sluggish, disconnected and difficult to use, no one on your team feels the effects more than that team itself.

    Employees waste time looking for things, rather than getting work done. The basic things are done through the multiple steps/ approvals/manual workarounds. Data resides across disparate tools, causing teams to switch contexts repeatedly throughout the day.

    These individual battles may look like small ones. Together, they generate huge friction that accelerates at scale.

    The High Price of Slow Internal Tools

    Slow internal tools hinder more than just efficiency — the entire growth engine of a company is effected.

    1. Quickly Adds Up to Lost Productivity

    When applications fail to load or processes are unclear, employees waste hours every week waiting for pages to load, looking for data or fixing preventable errors. Over hundreds or thousands of employees, this amount to thousands of unproductive hours lost every month.

    1. Slower Decision-Making

    Decision makers need the right information at the right time. When dashboards are stale, reports are manual and insights take days to put together, decisions get delayed — or worse, made based on incomplete information. Growth doesn’t decline from bad leadership so much as it is limited by systems that can’t handle the pace.

    1. Rising Operational Costs

    Slow tools typically force companies to make up for the loss with humans. More hand work is folded in, to control things that ought to be automated. With time, costs go up but output does not improve in quality or quantity.

    1. Declining Employee Experience

    Talented professionals expect modern tools. Their frustration boils over when they’re forced to deal with clunky systems. Engagement goes down, burnout goes up, and retaining high-performing employees gets more difficult — particularly in tech and operations.

    1. Limited Ability to Scale

    Whatever works for mammals at a smaller scale is often broken on the way up. Systems of the past battle with more and more data, users and transactions. Rather than facilitating growth, internal tools turn into bottlenecks and end up dictating the pace at which a business can expand.

    Why Slow Tools Persist for So Long in the Enterprise

    A lot of organizations are loath to replace clunky internal systems because “they work.” Swapping them out, or retrofitting them, can seem risky, costly or invasive. Teams evolve organically with shortcuts and abuses that obscure the real cost.

    But that tolerance creates an insidious problem: The business looks like it’s operating while gradually losing speed, agility and competitiveness.

    How They Solve This In The Modern Enterprise

    Top-performing companies don’t chase more tools — they redraw how work flows through systems.

    They simplify workflows, cut out unnecessary steps and tailor the software to how teams are working. And only modern cloud-native infrastructure, user experience design, automation and converged data platforms can remove the friction at each stage.

    Most importantly, they regard internal tools as strategic assets — not just IT infrastructure.

    How Sifars Is Empowering Businesses to Unblock Their Growth

    At Sifars, we help fast-growing organizations understand where their internal tools are holding them back — and how to fix this without distracting their teams.

    We partner with enterprises to replatform their businesses — and their customer experiences — for a new reality, where all digital experiences are more critical than ever to protect and grow your business.

    The payoff is faster execution, better decisions, happier teams and systems that scale as the business grows.

    Final Thoughts

    Sluggish internal tools typically don’t lead to instant failure — they silently cap growth potential. In the hypercompetitive environment of today, companies can’t afford to let friction determine pace.

    Success doesn’t scale just by being smarter or having a larger team. It’s born of systems that empower people to do their best work fast, with confidence and at scale.

    Want to get rid of internal friction and create systems that expand your enterprise?

    👉 Talk to Sifars and update your internal tools for consistent performance.

  • How Law Firms Are Using AI to Reduce Research Time by 70%

    How Law Firms Are Using AI to Reduce Research Time by 70%

    Reading Time: 3 minutes

    One of the most time-consuming portions of a lawyer’s job has always been doing legal research. It can take a lawyer hours or even days to find the appropriate answer by going through case laws, statutes, judgments, comments, and precedents.

    But in 2025, the legal field is going through a big change.

    AI-powered legal tools are helping businesses cut down on research time by as much as 70% without sacrificing accuracy.

    This change is huge for law firms that are getting more cases, having to meet stricter deadlines, and facing more competition.

    Why Legal Research Takes So Long

    Lawyers are slowed down by traditional research methods since they depend on

    • Searches for keywords by hand
    • Going through hundreds of examples that don’t matter
    • Reading long judgments from start to finish
    • Looking at different decisions that are at odds with each other
    • Putting complicated legal terminology into simpler terms
    • Checking again to make sure the jurisdiction is correct
    • Even with online libraries, research takes a lot of time for people to read and understand.

    What happened?

    Getting ready for cases takes longer, productivity goes down, and prices go up.

    How AI Is Changing the Way Lawyers Do Research

    AI doesn’t take the place of a lawyer’s knowledge; it makes it stronger.

    Modern AI tools are educated on big sets of case laws, statutes, and legal commentary. This lets them do research jobs in minutes instead of hours.

    Here’s how businesses are adopting AI to speed up their research process:

    1. AI-Powered Case Retrieval: Get the Right Precedents in Seconds

    Lawyers can now conduct the following instead of running dozens of keyword searches:

    • Ask questions in plain language
    • Get the right case laws right away
    • Choose by court level, jurisdiction, and time frame
    • Find precedents that have been missed

    AI doesn’t only look for things; it also knows the legal context, which makes searches far more accurate.

    2. Summaries of Automated Judgments

    Judgments might be more than 50 to 200 pages long.

    AI tools can make them shorter in:

    • bullet points
    • List of issues that are organized
    • ratio decidendi
    • influence of precedent

    It used to take half a day, but now it only takes 3 minutes.

    3. Making Legal Arguments

    AI helps lawyers write:

    • lists of issues
    • Questions on the law
    • structures of arguments
    • references to supporting cases

    This offers the lawyer a great place to start and cuts down on the time it takes to write the first draft.

    4. Mapping for Compliance and Statutory Purposes

    Law firms often have trouble with:

    • old citations
    • missing changes
    • wrong references to the law

    AI systems automatically map key laws and let lawyers know when they change, making sure that research is accurate and follows the rules.

    5. Case Insights that Predict

    Some powerful AI tools look at prior decisions to give:

    • Chance of outcomes
    • Pros and cons of arguments
    • Important trends in the courts

    These insights help lawyers create better plans and build stronger arguments.

    The Result: Research is up to 70% faster

    Companies that use AI are saying:

    • 70% less time spent on research
    • 2–3 times faster at getting ready for the first case
    • More accurate citations
    • Better consistency between teams
    • Increased strategic bandwidth for top lawyers
    • Less time looking. More time to contemplate.

    That’s what really matters.

    What This Means for Law Firms: More Work That Can Be Billed

    Lawyers can now spend less time on manual research and more time on analysis, client strategy, and getting ready for court.

    Faster Case Turnaround

    AI speeds up the process of preparing cases, which lets firms take on more cases without hiring more people.

    Better Experience for Clients

    Customers get answers faster, clearer paperwork, and results that are more likely to happen.

    Better Competitive Edge

    Companies who use AI now will have a technological edge that other companies will need years to catch up to.

    AI-assisted legal research is the way of the future, not AI-dependent research.

    AI won’t take the place of attorneys; it will take the place of old ways of doing things.

    Companies who see AI as a partner in speed, precision, and efficiency will be the real winners.

    Ready to Modernize Your Legal Research Workflow?

    👉 Sifars builds AI-powered legal research and document intelligence solutions that help law firms work smarter, faster, and with greater accuracy.

  • Building Enterprise-Grade Systems: Why Context Awareness Matters More Than Features

    Building Enterprise-Grade Systems: Why Context Awareness Matters More Than Features

    Reading Time: 3 minutes

    When teams start working on enterprise-grade software, their first thought is usually to add additional features, such as more dashboards, more automation, and more connectors. But in real businesses, having features alone doesn’t add value. A powerful enterprise system is one that can grasp context, which includes the rules, limitations, workflows, hierarchies, and real-world settings in which it works.

    Enterprise systems don’t work alone. They run departments, help people make decisions, keep things in line, and transport important data. Even the most feature-rich solution can appear distant, stiff, or even unusable if it doesn’t know what context it is in.

    Why Features Alone Aren’t Enough

    A product can have all the latest features, including AI-driven insights, automated workflows, and connections to popular tools, and still not operate in a business. Why? Businesses don’t need generic tools; they need tools that can be used in their own unique situations.

    A procurement system that doesn’t know about approval hierarchies, a CRM that doesn’t care about regional compliance, or an analytics platform that doesn’t grasp industry language can slow things down instead of speeding them up.

    Features get people’s attention, but context makes them use them.

    What it Means to Be Context Aware

    Context awareness is when a system can understand the world around it. It means that the software knows:

    How teams decide things

    What norms and restrictions they have to obey

    How departments talk to each other

    What exceptions happen a lot

    What kinds of words and data types are used in the business

    This deep understanding makes the system act more like a smart partner and less like a tool that doesn’t change. What happened? Adoption happens faster, there are fewer mistakes, and workflows that feel natural to real users.

    When Context Awareness Has the Most Effect

    1. Automating Workflows

    Automated workflows that don’t take into account role hierarchy or local regulations cause confusion and extra effort. Context-aware automation changes to fit the structure of each department and makes sure that every step is in line with how the business really works.

    2. Suggestions from AI

    AI is not reliable without context. To make decisions that teams can trust, models need to know what the organization’s goals are, what the data means, what the limitations of compliance are, and what the user wants.

    3. Checking and keeping data safe

    Businesses depend on having correct data. Context-aware validation stops bad inputs by knowing what “correct” means for a certain use case, area, or sector.

    4. Can be used by more than one department

    A context-aware system scales organically because it picks up on patterns that happen over and over again in different teams. Instead of having to rebuild things over and over, teams add to logic that already knows how they operate.

    5. Personalization without a mess

    Context lets you personalize things in an organized way, so various teams can have their own experiences without messing up the main structure.

    Why context is more important than ever in the age of AI

    AI has made software run quicker, but it can also be more dangerous if it doesn’t have any context. When big models make predictions without knowing the laws of the business, the results might be quite bad: policy violations, bad choices, or insights that don’t match up.

    AI needs structured knowledge, guardrails, fine-tuned instructions, and contextual decision frameworks to build enterprise-grade systems today. Only then can it give results that are safe for businesses and reliable.

    AI without context is just noise.

    When AI has context, it becomes smart.

    Making systems that change, not just work

    Businesses are always changing: new rules, new departments, new product lines, and new ways of doing things. A system that focuses on features gets old quickly.

    A system that knows what’s going on grows with the business.

    Tools with the most features won’t be the future of business technology.

    It will belong to tools that know why, how, and when those traits are important.

    Ready to build smarter, context-aware enterprise systems?

    👉 Partner with Sifars to design AI-driven solutions that adapt to real business logic, scale safely, and stay relevant as your organization evolves.

  • Top Engineering Mistakes That Slow Down Scaling — and How to Avoid Them

    Top Engineering Mistakes That Slow Down Scaling — and How to Avoid Them

    Reading Time: 2 minutes

    People frequently think of scaling a product as a big step, but the actual problem isn’t growth—it’s growing without destroying what currently works. A lot of businesses have a hard time at this stage, not because their idea isn’t good, but because their engineering wasn’t ready for growth.

    These are the most typical mistakes teams make when they grow, and how to avoid them before they become greater problems.

    1. Thinking of Early Architecture as Permanent

    It’s perfectly fine if most goods start with a simple configuration. When the same architecture is pushed too far, that’s when the trouble starts. As more people use the code, tightly coupled code, rigid structures, and fragile dependencies start to make development slower.

    The answer isn’t to start using microservices too soon; it’s to create systems that can change. Your product can develop without generating instability if you use a modular approach, make sure there are clear boundaries between components, and refactor slowly and on purpose.

    2. Allowing Technical Debt to Build Up

    In places where things move quickly, teams typically put speed ahead of quality. “We’ll fix it later” becomes a mantra, but then it’s too late to correct it. Technical debt doesn’t merely slow down development; it makes every modest modification a costly, risky job.

    The best engineering cultures set aside a certain amount of time throughout each sprint for maintenance, refactoring, and cleanup. This continuous pace of improvement stops big rewrites and keeps the product flexible.

    3. Scaling without being able to see

    A lot of teams think that scaling involves adding more servers or making them bigger. To really scale, you need to know how the system works when it’s under real pressure. Teams work blindly without the right monitoring, logs, and dashboards, which means they have to guess instead of figure things out.

    After a certain point, observability is not an option. Teams can fix problems before users see them by using clear metrics, dependable warnings, and regular tracking.

    4. Not being able to see database bottlenecks

    When things get bigger, the first thing that needs to be corrected is the database. Even with good technology, searches might take a long time, indexes can be missing, and it can be hard to find data.

    For a system to be scalable, it needs to regularly check requests, cache data when it makes sense, and partition data in a way that makes sense. These changes will keep the experience fluid, even when more people use it.

    5. Doing things by hand

    When teams grow, doing things like deployments, testing, and setups by hand can slow things down without anyone noticing. Releases take longer, there are more mistakes, and developers spend more time fixing bugs than adding new features.

    Automated testing, CI/CD pipelines, and environments that are always the same make it possible for teams to ship with confidence and at scale.

    Scaling isn’t about getting more resources; it’s about making better engineering decisions.

    Most problems with scalability don’t happen all at once. They grow stealthily, concealed under cheap fixes, old buildings, and systems that aren’t documented. The sooner a team learns to be disciplined in architecture, testing, monitoring, and documentation, the easier it will be to scale.

    Need guidance on building systems that scale smoothly?

    👉 Connect with us to audit your current setup and get a clear roadmap for scalable, future-ready engineering.

  • From FOMO to JOMO: Building Loyal Customers in an Anti-Hustle Culture

    From FOMO to JOMO: Building Loyal Customers in an Anti-Hustle Culture

    Reading Time: 4 minutes

    FOMO (Fear of Missing Out) has been used by marketers for years to get people to buy things, get involved, and act quickly.

    • “Only for a short time.”
    • “Just 2 seats left.”
    • “Don’t let this deal pass you by.”

    And for a long time, it worked.

    But the digital world is changing today. More and more people are burning out. People are too busy. And the continual pressure to “keep up” doesn’t make them want to do it anymore; it makes them tired.

    This change in culture is creating a new emotional landscape called JOMO, or the Joy of Missing Out. JOMO doesn’t mean that customers stop talking to each other.

    In other words, they prefer brands that respect their time, energy, and mental space.

    Brands that win in 2025 aren’t pushing people to act quickly.

    They are gaining trust, peace, and loyalty.

    Let’s look at how this change is affecting marketing and how companies can do well in the new “anti-hustle” era.

    1. The FOMO strategy is losing its strength

    FOMO used to be a secret weapon for marketers.

    But today’s customer is:

    • Getting a lot of notifications
    • Tired from too much digital stuff
    • Sick of being pushed to make choices
    • More aware of marketing tricks that are meant to trick people

    So they don’t react; they pull away.

    FOMO presently makes:

    ❌ worry 

    ❌ doubt 

    ❌ not being involved

    People today don’t want to chase.

    They want to pick, and they want to do it calmly and with confidence.

    2. JOMO: The Feeling That Today’s Shoppers Can Relate To

    JOMO uses the happiness that comes from saying no, slowing down, and making choices on purpose.

    Brands that promote these things are more likely to connect with people now:

    ✔ easier decisions 

    ✔ healthier digital habits 

    ✔ balanced lives 

    ✔ mindful consumption 

    ✔ real experiences

    This is especially true for:

    • Gen Z (conscious of burnout)
    • Millennials (who are sick of the hustle culture)
    • People who work
    • People who care about their health

    JOMO marketing doesn’t put pressure on people; it makes them feel protected.

    3. JOMO Makes Customer Loyalty Stronger and More Lasting

    FOMO causes short-term surges,

    JOMO makes people loyal for a long time.

    How?

    Because it puts first:

    ➤ Openness

    Honest communication and clear prices.

    ➤ Trust

    No last-minute tricks to put pressure on you.

    ➤ Storytelling that puts value first

    Not hustling, but helping.

    ➤ Value your customers’ time

    No noise and a smooth user experience.

    Customers feel valued when they use JOMO, and valued customers stay.

    4. What JOMO-Driven Brands Do Differently

    Brands that use JOMO don’t push harder; they guide better.

    1. They don’t make things more complicated; they make them less so.

    • Simple lines of products
    • Web design that is simple
    • Clear routes for making decisions

    2. They make things clear instead of urgent.

    “Here’s how this will help you.”

    Not “Buy now or you’ll regret it.”

    3. They celebrate wins that are slow and important.

    • Not always working hard.

    4. They put more emphasis on education than on persuasion.

    • Don’t put pressure on people; show them you know what you’re talking about.

    5. They make digital spaces that are tranquil and based on values.

    • Soft hues, a calm tone, and easy navigation.

    6. They tell people to just buy what they really need.

    • This fosters trust, which in the long run raises lifetime value.

    5. Areas Where JOMO Is Becoming a Marketing Giant

    ✓ Brands for health and lifestyle

    People want peace, not chaos.

    ✓ Tools for productivity and SaaS

    Less rushing around and more planned work.

    ✓ Edtech: Learning without becoming tired.

    Fintech: Make calm, sure decisions about money.

    ✓ Health Care

    Communication that isn’t scary and is calming.

    ✓ D2C and retail

    Be careful about what you buy instead of just buying it on a whim.

    The anti-hustle movement isn’t just a fad; it’s a change in how people act.

    6. Real-Life Examples of JOMO Marketing

    ✔ Calm App’s “Do Nothing for 10 Minutes” ad

    ✔ Apple’s simple product releases

    ✔ Airbnb’s “Live Anywhere” gives you the freedom to choose where you live.

    ✔ “Buy Less, Demand More” from Patagonia

    ✔ Notion’s productivity strategy that helps you stay calm and not rush

    These brands don’t need to be rushed.

    They make room for calm choices, which is funny because it leads to more conversions.

    7. A Useful Framework for Moving from FOMO to JOMO

    This is a simple model for changing brands:

    FOMO to JOMO

    Value clarity → Scarcity “Only 1 left” → “Here’s why you’ll love this.”

    From aggressive CTAs to permission-based CTAs

    “BUY NOW” becomes “Look around when you’re ready.”

    Loud visuals → Soft, breathable visuals

    Ads that put pressure on you → Education based on trust

    Difficult funnels → Smooth trips

    It’s not about how urgent it is anymore.

    It’s about making things easy.

    8. The Big Idea: Brands that are calm do better

    A consumer who is calm:

    ✔ reads more 

    ✔ trusts more 

    ✔ converts more 

    ✔ stays longer 

    ✔ naturally advocates

    In a world full of stimulation, the best luxury is peace of mind.

    Brands that offer it build emotional equity that no one else can replicate.

    Conclusion

    People are tired.

    The culture of hustling is going away.

    The demand to “stay updated all the time” is losing its strength.

    And when strategies based on FOMO fall apart, a new motor of loyalty is rising:

    • JOMO means the joy of making choices slowly, carefully, and on purpose.
    • Brands that accept this change will have stronger relationships, keep more customers, and gain more trust.
    • Brands that don’t try to get attention will perform well in the future because they make things tranquil.

  • AI and the Entrepreneurial Mindset: Turning Challenges into Opportunities

    AI and the Entrepreneurial Mindset: Turning Challenges into Opportunities

    Reading Time: 5 minutes

    Entrepreneurship has never been linear. It’s messy, exhilarating, anxious, fulfilling, and unpredictable – all in one week sometimes. Every founder knows the feeling when, one moment, you feel unstoppable, and at the same time, you are wondering why anything is not working.

    But this new generation of entrepreneurs has a secret advantage that previous ones did not: artificial intelligence.

    Not in a sci-fi way, not in a “robots will replace us” kind of way.

    More like a silent partner that helps you think clearer, move faster, and build smarter.

    Today, AI isn’t just another tool; it’s more about slowly becoming part of the entrepreneurial mindset, helping founders spot opportunities they couldn’t see before, move past roadblocks with more ease, and build digital products without drowning in complexity.

    At Sifars, we see this each and every day. We’ve watched entrepreneurs—some with big visions, some just starting out—use AI to bring ideas to life and build apps that actually make a difference.

    How AI Makes Entrepreneurs Stronger

    1. AI brings clarity when everything feels foggy.

    It’s that uncomfortable place every founder goes through: you don’t know if your idea will succeed. You’re basically guessing, hoping, and trying to read your customers’ minds. It’s exhausting.

    AI removes a lot of that guesswork.

    It helps you understand what people actually want, how they behave, what they click on, what they avoid, and what is missing in the market. You can test ideas quickly and see results instantly.

    Whether someone is researching the easiest way to develop a mobile app or checking out app creation services, AI tools give them the clearest view of that direction.

    At Sifars, we use these insights every time we work on web and mobile app development from scratch – because when founders understand the “why” behind their decisions, everything moves smoother.

    2. AI Makes App Development Faster – and Cheaper

    Let’s be honest: building an app used to be expensive, slow, and full of surprises – the not-so-fun variety.

    But AI has changed the game.

    Now, you can design faster, automate big chunks of code, instantly test features, and catch issues before they grow into big problems. Even mobile application development for beginners will be able to make something real in a pretty fast way.

    Searches like:

    • mobile app maker near me
    • app development software
    • Low-cost mobile application development

    are becoming more common because founders want speed and affordability – without sacrificing quality.

    At Sifars, we mix AI tools with skilled engineering so that entrepreneurs get fast results without the “budget explosion” that used to be associated with developing an app.

    3. AI Helps You Go From Idea to App Without Losing Momentum

    Every entrepreneur knows the feeling: you have a great idea, you’re excited… And then reality kicks in. You’re not sure where to start, who to hire, or what the next step is.

    AI steps in beautifully here.

    It can transform ideas into wireframes, suggest layouts, build user flows, and speed up backend work. It’s keeping your momentum alive.

    Anyone looking for how to build a mobile app the fastest, or trying tools such as an app maker web or an app development app, is looking for just this sort of support.

    With Sifars combining AI tools with real human expertise, founders finally get a path that feels doable instead of overwhelming.

    4. AI Helps You Give Your Customers What They Expect

    What people want today is not “just an app”; they want experiences—fast, smart, intuitive ones.

    AI helps businesses create that through:

    • Personalized recommendations
    • Helpful search
    • Instant support (chatbots)
    • Smart notifications
    • Adaptive interfaces
    • Real-time performance enhancements

    If your business is heavily reliant on web development and mobile app development, adding these features can improve user retention dramatically.

    And if you want to go from web to app or convert a web application to a mobile application, AI makes that transformation smoother and more polished.

    5. AI Helps You Move Quicker Than Your Competition

    In today’s world, speed is not just an advantage; it’s survival.

    AI helps entrepreneurs:

    • Launch faster
    • Make quicker decisions
    • Get insights instantly
    • Automate marketing
    • Scale without hiring a lot of people

    Huge win for founders comparing the price of mobile app development, seeking app-making services, or looking for a provider of web app development near their location.

    At Sifars, we deploy AI-driven sprint cycles that enable founders to quickly build their product without losing the care and detail it requires.

    What About Local Businesses?

    If you are a business owner looking for:

    • mobile app maker near me
    • app agencies
    • Conversion of Web App to Mobile App
    • mobile application development sites

    You are not alone. After all, many people prefer to work with someone they can easily speak to, someone who understands the local markets, culture, and customer behaviour.

    While Sifars serves clients across the world, our roots in Patiala, Punjab, give us that personal touch many business owners appreciate. We are close enough to understand your challenges and skilled enough to build world-class solutions.

    We help businesses create:

    • Custom applications
    • AI-integrated platforms
    • Web-to-mobile conversions
    • Mobile management systems And scalable enterprise tools

    Whether you’re building something new or upgrading something old, we mix innovation with practicality so the journey feels smooth.

    How AI Turns Challenges into Opportunities

    Yes, there are challenges in entrepreneurship, but AI has that special way of turning them into something useful.

    1. Building MVPs Faster

    You can build early versions of your app using:

    • No-code tooling
    • App dev software
    • Mobile application development apps
    • Application Development Tools

    It’s perfect for founders because this is the easiest possible way to build a mobile app without needing months or thousands of dollars.

    2: Automate the Stuff That Eats Up Your Time

    AI can handle:

    • Repetitive operations
    • Customer service
    • Data entry
    • Routine marketing tasks

    It lets the founders focus on what really matters: strategy, vision, and growth.

    3: Creating applications people will actually love With AI inside your app, you can offer: 

    Smart notifications Real-time insights Personalised experiences Intelligent dashboards These are not just nice features; they keep the users there longer.

    4: Grow Without Growing Your Costs

    AI improves efficiency, so you can scale without hiring big teams. Which is a huge win for everyone looking for low-cost mobile app development or budget-friendly solutions.

    How Sifars Helps Entrepreneurs Win With AI

    We love working with founders who dream big at Sifars. We help turn ideas into real digital products through:

    ✔ Custom web & mobile app development

    ✔ AI-driven apps and automation

    ✔ Web-to-mobile conversion

    ✔ Fast prototypes & MVPs

    Affordable, high-value engineering ✔ Ongoing support & maintenance Whether it be App Maker Mobile, building a mobile application from scratch, or migrating a web application to a mobile application, our team is all set to guide you in crafting something meaningful.

    Conclusion 

    You Can Build Anything with AI and Strong Mindset Of course, there will always be some bumps on any entrepreneurial path. Mix your grit with the power of AI, though, and something almost magical happens. Challenges become opportunities, ideas become products, and uncertainty becomes possibility. Be it for an app you dream of, a digital upgrade, or seeking a trustworthy team to take care of your web and mobile application development services, Sifars is here to help you build with confidence.

  • Best way to handle background processes in linux

    Best way to handle background processes in linux

    Reading Time: < 1 minute

    Every programmer soon comes to a point where he requires to setup several jobs to run in the background with 100% uptime. For example a website server, email server, job schedulers etc.

    These processes are more like a daemon process. And as like any other job, these tend to stop due to mishandling or uncatchable exceptions/errors. Rather to put a person to sit and constantly monitor the jobs, we make use of the Supervisor.

    A Supervisor is a process control system that will start, stop and monitor all our processes and will restart any, that fails.

    To install Supervisor on Ubuntu:

    sudo apt-get install supervisor

    Configuring Supervisor

    Let say we have a command that should run indefinitely:

    python run_this_command

    Supervisor configuration files are stored in the /etc/supervisor/conf.d directory. Let’s create a new configuration file as monitor-my-process.conf.

    Inside monitor-my-process.conf write:

    [program:my-worker]
    process_name=%(program_name)s_%(process_num)02d
    command=python run_this_command
    autostart=true
    autorestart=true
    user=linux_user
    numprocs=8
    redirect_stderr=true
    stdout_logfile=/home/linux_user/app.com/worker.log

    In this example, the numprocs directive will instruct Supervisor to run 8 processes of my command and monitor all of them, automatically restarting them if they fail. Also change the ‘linux_user’ to the user you want the process to be run as.

    Starting Supervisor

    Once the configuration file has been created, you may update the Supervisor configuration and start the processes using the following commands:

    sudo supervisorctl reread
    sudo supervisorctl update
    sudo supervisorctl start my-worker:*

    Cheers! Your processes will run indefinitely with auto restart.

    Bonus!

    Few more commands that are likely to be used sometime later:

    Stop all supervisor workers:

    sudo supervisorctl stop my-worker:*

    Restart all supervisor workers:

    sudo supervisorctl restart my-worker:*

    Get the current status of workers:

    sudo supervisorctl status my-worker:*